Heralded phase-contrast imaging using an orbital angular momentum phase-filter
نویسندگان
چکیده
We utilise the position and orbital angular momentum (OAM) correlations between the signal and idler photons generated in the down-conversion process to obtain ghost images of a phase object. By using an OAM phase filter, which is non-local with respect to the object, the images exhibit isotropic edge-enhancement. This imaging technique is the first demonstration of a fullfield, phase-contrast imaging system with non-local edge enhancement, and enables imaging of phase objects using significantly fewer photons than standard phase-contrast imaging techniques.
منابع مشابه
Study on Generation of Higher Order Orbital Angular Momentum Modes and Parameters Affecting the Vortex
In this manuscript, higher-order Orbital Angular Momentum (OAM) modes and parameters affecting vortex in the radiation pattern have been studied. A uniform circular array resonating at 10 GHz frequency is formed using eight identical rectangular patch antennas. Three uniform circular arrays are analyzed, simulated, and fabricated for OAM modes 0, +1, and -1 respectively. The higher-order OAM mo...
متن کاملClassical to quantum transfer of optical vortices.
We show that an optical vortex beam, implemented classically, can be transferred to the transverse amplitude of a heralded single photon. For this purpose we have relied on the process of spontaneous parametric downconversion (SPDC) for the generation of signal and idler photon pairs, using a pump in the form of a Bessel-Gauss (BG) beam with orbital angular momentum (specifically, with topologi...
متن کاملOrbital angular momentum 25 years on [Invited].
Twenty-five years ago Allen, Beijersbergen, Spreeuw, and Woerdman published their seminal paper establishing that light beams with helical phase-fronts carried an orbital angular momentum. Previously orbital angular momentum had been associated only with high-order atomic/molecular transitions and hence considered to be a rare occurrence. The realization that every photon in a laser beam could ...
متن کاملHigh-capacity millimetre-wave communications with orbital angular momentum multiplexing
One property of electromagnetic waves that has been recently explored is the ability to multiplex multiple beams, such that each beam has a unique helical phase front. The amount of phase front 'twisting' indicates the orbital angular momentum state number, and beams with different orbital angular momentum are orthogonal. Such orbital angular momentum based multiplexing can potentially increase...
متن کاملTransfer of orbital angular momentum from a super-continuum, white-light beam.
Beams with helical phasefronts described by exp(ilphi) carry an orbital angular momentum equivalent to lh per photon. Using diffractive optics this helical phase structure can be applied to every spectral component of the beam such that a spatially coherent white-light beam can carry orbital angular momentum without any chromatic distortion. This achromatic property can be hard to achieve in sp...
متن کامل